

Cybersecurity for Energy Delivery Systems 2010 Peer Review

Alexandria, VA ◆ July 20-22, 2010

Co-PI: Jason Stamp, Ph.D.

Co-PI: Laurie Phillips

Sandia National Laboratories
Reliability Impacts for Cyber Attack (RICA)

Summary Slide: Reliability Impacts for Cyber Attack (RICA)

- •Outcomes: Quantitative impact analysis of cyber attacks against power grid control systems (that affect grid topology and operations), including potential mitigation steps, using reliability metrics. Analyze large-scale cases using simulation software in a High-Performance Computing (HPC) environment.
- ■Roadmap Challenges: Develop evidencebased business case to increase and shape investment in control system security.
- ■Major Successes: Build environment is operational and in use, nearly all major software components are functioning, test cases run well.

- Schedule: Prototype tool July 2010; reliable HPC software September 2010; final report September 2010
- Level of Effort: \$250k
- Funds Remaining: \$35k
- Performer: SNL
- Partners: WECC (pending), lowa
 State University (FY10)

Approach and Execution: Research Goals

Questions like these can be addressed using RICA:

- How are reliability impacts different for vulnerable relays or SCADA systems?
- What's the relevant level of protection for smart meters?
- What's the impact of cutting the number of successful cyber attacks in half? Is it the same as recovering twice as quickly?
- What effect do vulnerable control systems for PV/wind have on grid reliability?
- What is the potential impact of a new hypothetical vulnerability?

For certain classes of adversaries (example threat matrix shown):

Category	Funding	Goal Intensity	Stealth	Physical Access	Cyber Skills	Implementation Time	Organization Size
I	Н	Н	Н	Н	Н	Decades or years	Hundreds
II	Н	Н	Н	M	M	Years	Low hundreds
III	M	Н	M	M	M	Months	Tens
IV	L	M	Н	L	Н	Months	Tens
\mathbf{V}	L	M	M	L	M	Months	Up to ten
VI	L	L	L	L	L	Weeks	One

Approach and Execution: Research Plan

- RICA measures the impact of cyber attack by determining (via modeling) unserved load many times for different load* and grid conditions
- Performance is attributed to experiment parameters (constant over 10⁵-10⁷ simulation runs):
 - Initial grid topology (currently focused on the WECC area)
 - Failure parameters of grid components (MTTF/MTTR)
 - Attack parameters & targets (MTTA/MTTR)
 cyber effects come into play here
- The outcome of each experiment is a set of conventional reliability metrics, e.g., Loss of Load Expectation (LOLE) and Frequency of Interruption (FOI)

^{*}note: time of day & year are represented by 365x24 hourly load profiles

Approach and Execution: Research Plan

Technical barriers:

- RICA could not simulate large power grid models (Solution: FY10 focus on HPC simulation of WECC with parametric analysis for risk given different attack and recovery rates)
- Optimal power flow software module is not performing adequately (Solution: conversion to interior-point method leveraging network distribution factors)

Acceptance barriers:

- Quantitative analysis is unfamiliar for industry (Solution: use accepted reliability calculation techniques and metrics)
- Cyber models/scenarios can be made more realistic (Solution: FY11 plans to improve modeling, perhaps using Hidden Markov Models, Petri nets, etc.)
- RICA is considered as a transmission-only tool (Solution: FY11 plans to analyze cyber attack against AMI/renewables for distribution and microgrids)
- Complementary follow-on work: develop complementary quantitative approach for high-resource adversaries

Technical Accomplishments, Quality, and Productivity

FY10 Technical Milestones Met:

- Build environment
- Code module test harness
- Preprocessor module runs
- Simulation scheduler
- Load flow module
- Database & prototype visualization

FY10 Milestones Remaining:

- Optimal power flow
- Functional federated software
- WECC simulation and parametric analysis
- Project Success: use of RICA for impacts analysis by stakeholders to develop "evidence-based business cases to increase and shape investment in control system security"

Collaboration/Technology Transfer

- Leveraging additional Sandia HPC funding opportunity
- Plans to gain industry input:
 - Still getting feedback from published article last year
 - Writing a journal article this FY
 - Developing WECC relationship
 - Project has existing relationships with universities
 - Participation on relevant technical committees
- Plans to transfer technology/knowledge to end user:
 - Intended for use by:
 - Government/research: understand risk given new vulnerabilities or mitigation
 - Industry: maintain system reliability given known organizational attack rates
 - Interact with WFCC to:
 - Broaden industry interaction
 - Gain acceptance through power flow validation (possibly using WECC load profiles)
 - Understand WECC decision-making process to determine key RICA uses

Questions?

RICA: Quantitative impact analysis of cyber attacks against power grid control systems (that affect grid topology and operations), including potential mitigation steps, using reliability metrics

